Status of the work about light signal simulation

Anne CHAPPUIS - Isabelle DE BONIS - Dominique DUCHESNEAU - Laura ZAMBELLI

WA105 SB Meeting 8 March 2017

Updates

- At last talk at SB meeting (8 February 2017):
 - Presentation of preliminary light maps with low statistics
 - Impact of the PMT spacing (1m or 65cm) on light signal collection
- An issue concerning the detector implementation (a part of the cathode supporting structure wasn't activated) was fixed
 - This issue impact only the results presented at last talk (8 February 2017)
 - This correction reduces the number of collected photons, but does not impact the comparison between the two PMT configurations
 - → We have relaunched a map production.
- Consequences of the reduction of the collected photon number:
 - We have increased the statistics for the GAr map: $10^8 \rightarrow 5.10^8$
 - The landau fit of the travel time distribution was improved (parameter bounds)
- Outline
 - Update of the study of the PMT positioning impact on light signal collection
 - First results on signal induced by cosmic muons

PMT positioning impact on light signal collection

On last talk (8 February), presentation of the impact of the PMT spacing on light signal collection:

- PMT every 1m²
- PMT every 65cm²

As discussed at the meeting, we have also look at a **third possibility** with PMT **non-uniformly** spaced.

→ Comparison between PMT spaced by 65cm and PMT non-uniformly spaced

Method:

Generation of 10⁷ photons at different points of the detector

→ Number of photons reaching the PMT array

PMT positioning impact on light signal collection

Comparison between the configuration with PMTs spaced by 65cm and the third option

- → PMTs uniformly spaced: increases the number of collected photons at the detector center
- → PMTs non-uniformly spaced: increases this number at detector edges (for low Z)

PMT positioning impact on light signal collection

Computation of the ratio

- Mean ratio of 0.95
- The option with PMT non-uniformly spaced slightly reduces the number of photons reaching the PMT array.

→ What is the impact on the background induced by cosmic muons?

PMT positioning impact on signal induced by cosmics muons

- Infinite absorption length
- PMT quantum efficiency: 0.20
- Electroluminescence gain G=300
- PMT and electronics response not taken into account
- Sum of the 36 PMT signals

- → PMTs uniformly spaced: the number of photons hitting the PMT array increases
 - → PMTs non-uniformly spaced: the ratio between N_{S1} and N_{S2} is a little lower

WA105

Influence of the binning on the S1/S2 discrimination

Binning used for now: 400ns in order to combine the light data with charge collection data.

Is it interesting to also use 25ns sample for cosmic tagging?

For this slide and the next slides:

- PMT non-uniformly spaced
- Sum of the 36 PMT signals

Impact of the binning on the S1/S2 discrimination (very preliminary results)

Threshold method (developed last year by Marie and Alessandra)

- → If the signal in a bin is above the threshold, it is tag as S1 signal
 - → We look at the fraction of S1 and S2 light above the threshold

→ The trends seem similar for the two cases

Note: very preliminary results, need additional work

Impact of the binning on the S1/S2 discrimination (very preliminary results)

The aim is to keep a **great fraction of S1** light above the threshold, while having a low fraction of S2 light.

Note: very preliminary results, need additional work

Dependence to the absorption length in LAr

The absorption in LAr is not taken into account in the light map generation

→ This absorption can be implemented in Qscan by giving a weight to each photon.

$$\exp(-\text{travel_time} \cdot \frac{C}{\lambda_{Abs} \cdot n_{LAr}})$$

→ No **need** to generated **new maps** to perform preliminary studies about the absorption length

Due to this implementation, we can have a number of photons between 0 and 1, which is not possible

→ We will improve our implementation to correct this effect

Dependence to the absorption length in LAr

- → The number of photons is globally reduced for S1 and S2
 - → The S2 signal is the most affected

Dependence to the absorption length in LAr

Threshold method (developed last year by Marie and Alessandra)

Comparison with $\lambda_{Abs} = \infty$

- → The fact that S2 signal is more affected that S1 signal is visible
- → For a given remaining fraction of S2, the S1 fraction above the threshold is higher

Note: very preliminary results, need additional work

Conclusion

Light map production

- New light maps has been produced
 - Corresponding to the geometry described at last talk (8 February 2017, SB Meeting, slide 3)
 - 2 different versions: PMTs uniformly spaced by 65cm, and PMTs non-uniformly spaced
 - The time distribution fit has been improved
- The map version with PMT spaced by 1m has not been updated

Impact of the PMT positioning on light signal collection

→ The two configurations (PMTs uniformly or non-uniformly spaced) are quite similar for the light signal collection

Cosmics tagging

- Preliminary results, using the threshold method, has been obtained
 - → Using 25ns/bin instead of 400ns/bin does not improve the S1/S2 ratio
 - → The absorption length in LAr is a crucial parameter for the simulation and for the tagging
- Next steps:
 - Continue the development of the algorithm tagging
 - Studies with smaller absorption lengths
 - Studies with different electroluminescence gain
 - Using the signal collected PMT by PMT

